论文部分内容阅读
本文主要讨论了在实际问题中遇到的两类偏微分方程的数值解法,主要研究了Burgers方程的隐-显多步有限元方法和分裂型最小二乘混合有限元格式,并且对一类反应扩散方程的隐-显多步有限元方法进行了研究.隐-显多步有限元方法结合了隐显式多步法和有限元方法,首先在空间层上利用有限元方法得到方程的弱形式,然后对时间变量运用隐显式多步法进行离散,从而得到稳定的、相容的、有效的演绎格式.这种格式能够得到时间方向的高精度离散,可以更广泛的应用于对时间精度要求较高的实际问题中,分裂型最小二乘混合有限元方法首先在时间层上将方程进行离散,引入未知变量后,便可得到一个耦合的方程组,然后进行区域分解,把方程组分成两个独立的子系统,这样就会使原问题的求解规模和难度得到很大程度的降低.通过理论上的分析,本文得到了该方法对原有未知变量具有L2(Ω)最优阶误差估计,本文重点进行了隐-显多步有限元方法和分裂型最小二乘混合有限元方法的理论研究,研究结果表明本文所运用的两种数值模拟方法是可行的。
本文共分四章:
第一章绪论部分简要介绍了有限元方法的发展历程以及本文所用到的基本理论知识。
第二章研究了Burgers方程的隐-显多步有限元格式。
第三章研究了Burgers方程的分裂型最小二乘混合有限元格式。
第四章研究了一类非线性反应扩散方程的隐-显多步有限元格式。