基于KAM理论的频率映射分析及广义多项式逼近理论

来源 :内蒙古大学 | 被引量 : 0次 | 上传用户:whzjs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文工作之一是基于LaskarJ提出频率映射分析法(NumericalAnalysisoftheFundamentalFrequencies,NAFF),证明一种较LaskarJ情形下精度更高的窗口,Blackman窗口,此窗口在HunterC所提出的DFT方法中也比Hanning窗口精度高,具有一定的理论和应用价值;另一工作主要针对保测映射的逼近问题,将广义多项式与Weierstrass多项式逼近定理的Lebesgue多项式进行比较,给出一些逼近结果.全文分为三章.  第一章,主要介绍了经典Hamilton系统、经典KAM理论的背景、意义、国内外的研究现状,及本文的主要工作.  第二章,利用LaskarJ提出的频率映射分析方法证明了Blackman窗口比Hanning窗口的逼近精度高,及在HunterC所采用的DFT方法中逼近精度比Hanning窗口精度高的结论.  第三章,考虑保测映射的广义多项式逼近问题,较Lebesgue原来的多项式相比,广义多项式精度较高,不幸的是广义多项式的光滑程度下降.
其他文献
连续数值方法在数值求解非连续的常微分方程、时滞微分方程、时滞微分代数方程、中立型时滞微分方程以及微分-积分方程时起着相当重要的作用。在过去的几十年中,关于龙格-库塔
本文从一个2×2的离散谱问题出发,首先通过对辅谱问题的无限展开,得到了Lenard递推关系,并最终构造出了(1+1)维的离散Kaup-Newell方程.接着,通过对Lax对的非线性化,相应的约束被找
考虑如下具有非线性阻尼项的非线性电波方程的Cauchy问题,在小初值的情形下,方程Cauchy问题解的整体存在性,唯一性和衰减性.(utt-α△utt-△u-β△ut=△f(u)t,x∈(R)n,t≥0,(0.1)u(
对于非完整运动学系统和非完整动力学系统的镇定和跟踪问题,许多学者已展开广泛研究,系统的模型存在很多种不确定性因素,一般先设定参数已知。本文针对的非完整移动机器人,消
图G的H-系或H-分解是有序对(V(G),S),其中V(G)为图G的顶点集,S的每一个元素均为边不相交且与H同构的G的子图。当H为m-圈时,图G的m-圈分解或m-圈系得到了广泛的关注。   本文主
本文应用变分方法和临界点理论讨论了三类椭圆方程变号解的存在性和多重性.首先我们研究如下一类含非齐边值条件的椭圆方程:其中ΩcRN(N≥3)是一个具有光滑边界aΩ的有界区域,g(
有限域上的编码近几年一直是编码理论研究的热点之一,本文在前人理论研究成果的基础上研究了广义准扭转码的结构,主要研究生成多项式矩阵和校验多项式矩阵的相关性质.  第一章
本论文主要研究了两个大问题,即大型稀疏鞍点问题的迭代解法和矩阵方程(A1XB1,A2XB2)=(C1,C2)基于梯度的迭代算法.主要内容包括如下四章:   第一章介绍了鞍点问题及矩阵方程(A1X