面向多源数据的深度序列学习算法研究与应用

来源 :浙江大学 | 被引量 : 0次 | 上传用户:hanbing81868164
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着云计算、大数据和物联网等信息技术的飞速发展,全球数据呈现出海量集聚的特点。这些从不同来源所获取的海量数据反映着人类社会的生活和规律,如群体出行和交通流量。因此,如何对多源数据进行分析与理解,以更好地全面了解这些多源数据所蕴含的丰富信息,是一个值得研究的重要问题。
  多源海量数据本质上是序列数据,这些从不同来源获得的序列数据之间相互补充、彼此交互,刻画着人类社会中群体的行为习惯和生活模式。本文针对交通速度预测和公交线路生成这两个实际场景,在获得道路交通速度、群体用户地图查询、公交线路网等多源序列数据的基础上,围绕如下三个挑战问题进行了深入研究:1)多源序列数据的建模与融合;2)多源序列数据的交互机制;3)多源序列数据的序贯决策优化。在这三个挑战的研究过程中,分别提出了结合辅助信息的多源序列数据融合的深度学习方法、结合注意力机制的多源序列数据的深度融合学习方法、结合残差网络的多源序列数据交互的深度学习方法、基于邻近策略优化的多源序列数据生成的深度强化学习方法。
  本文的主要研究工作包括:
  提出了一种结合辅助信息的多源序列数据融合的深度学习方法。该方法使用不同神经网络结构将离线地理信息、路网拓扑结构和在线地图查询等多源序列数据融合到统一的特征空间,以联合学习多源异构序列数据中的同构特征,从而预测交通速度。
  提出了一种结合注意力机制的多源序列数据的深度融合学习方法。该方法使用基于内容的注意力机制来更深层次地融合多源序列数据的异构信息,并运用于交通速度预测任务中。
  提出了一种结合残差网络的多源序列数据交互的深度学习方法。该方法通过残差网络去解释并修正单源序列数据学习中易导致的误差,协同建模多源序列数据之间的时序交互,有效提升了交通速度预测的性能。
  提出了一种基于邻近策略优化的多源序列数据生成的深度强化学习方法。该方法以候选公交线路的表达作为强化学习的状态、候选公交线路的下个邻近站点作为强化学习的动作以及候选公交线路可节省时间作为强化学习的奖励,将公交线路优化问题形式化为基于邻近策略优化的深度强化学习。实验结果表明,相比于传统的贪心算法和启发式算法,该方法显著提升了算法性能。
  本文围绕着面向多源数据的深度序列学习问题展开研究,针对多源数据的异构性、时序交互和序贯优化这三个挑战,针对性地提出了有效的深度序列学习算法,并将其应用于交通速度预测和公交线路生成这两个实际应用场景中。
其他文献
观察数据中发现变量之间的因果关系,解释事件是如何发生以及预测其未来发展趋势,几乎在所有学科中都有研究和应用。例如医学、生物学、经济学、物理学、社会科学等领域均把因果关系作为解释、预测和决策的基础。信息科学领域,可以使用贝叶斯网络中的马尔科夫毯(边)来表示真实世界中的因果关系。近年来,有学者采用基于回归正则化模型马尔科夫边的发现方法从观测数据中研究事件之间的因果相关性,并从理论上揭示了基于回归正则化
在单机数据上训练的深度学习机制,受限于数据量和算力容易出现过拟合以及较低的可用性等问题。为了解决这个问题,采用中心化的训练架构,聚合多个参与方的数据来训练一个全局模型是普遍采用的模式。或者采用分布式的训练模式,基于中心化服务器聚合各个参与方的模型梯度更新,但这两种中心化的架构始终存在单点故障的可能。此外,当前深度学习系统对于数据隐私和模型隐私的关注不够,限制了深度学习在诸如医疗、金融等敏感数据上的
学位
图被广泛地应用于各个领域中,例如交通路网、电子通信网络、社交网络、生物信息网络以及协作网络等。图结构中,边表示顶点之间的关系。图上有许多特制的算法,图查询研究一直受到学术界与工业界的广泛关注。随着信息化时代的到来,各种信息以爆炸模式增长,导致图的规模日益增大。如此大规模的数据量,给图查询处理带来了极大的机遇与挑战。  目前已有的大量图查询算法大多是集中式算法,但随着图数据的指数型增长,传统的索引与
学位
随着计算机处理能力的增强,个人手持设备的普及,将三维城市模型服务推广到普通用户中在技术上变得逐渐可行,人们对基于三维城市模型信息服务的需求也越发旺盛。在游戏及VR等应用场景中,为了提升玩家用户的沉浸感,常常需要将指定的城市模型接入到应用中。因此,在保持原始扫描获得数据的语义信息和视觉效果下,应尽量提高其存储和处理效率。所以需要对原始数据进行一定的预处理,在提取其语义信息后对模型进行适当的简化。  
电网中的异常检测指电网在未受到攻击的情况下,由于个别或部分元件发生故障,导致网内其他设备表现出偏离平衡状态的情况。严重的电网异常容易引发大规模停电事故,从而造成巨大的经济损失。因此,分析人员需要快速、准确的检测电网异常,以此为基础做进一步的故障原因诊断、影响分析,并采取对应的修复措施。已有的电网异常检测工作多基于聚类、分类等自动化方法,然而随着检测准确率的不断提高,误报与漏报率仍居高不下。传统的漏
学位
光谱图像是一种通过捕获数个频率范围的电磁波进行成像得到的图像。光谱图像除仅有一个波段的单色图像外,还有包含三个到数十个波段、光谱分辨率较低的多光谱图像,与光谱分辨率在10nm范围内、常有数十至数百个波段的高光谱图像,这种含有丰富光谱信息的图像在科学研究种具有重要的作用。然而,由于超越可见光波长范围的波段无法被人类直接观察、且大量的波段数据本身也加重了计算负担,光谱图像的可视化与降维融合成为了十分重
随着科学技术的发展,每个人的生活都离不开各式各样的互联网服务。但是,互联网的服务系统却面临着信息爆炸带来的信息过载挑战。个性化推荐系统则是解决这一问题的核心方法。  现阶段面向大规模互联网服务系统中的个性化推荐主要面临着以下三大块棘手的问题:海量移动用户访问日志难以识别;项目受短期热点的影响激增;不同的协同过滤推荐应用很难利用同一个算法来提升效果。  第一个问题,是来源于用户层面的挑战。数据的获取
在信息化的时代,人们获取大量数据,从中提取关键信息,并据此做出决策。各个领域的从业者,包括科学家、分析师、记者、设计师,乃至普通大众,均意识到数据和数据分析的重要性。其间,数据可视化和可视分析作为发掘数据中有效信息、传达见解和交流与协作的高效工具被广泛运用于商业智能、城市规划、新闻传播等。  伴随着互联网、传感器、物联网等技术的不断发展,人们获取信息的能力和分析数据的需求不断增长。这样的趋势对于可
手势交互可以通过多种交互设备进行,如深度相机、彩色相机、数据手套、表面肌电电极等。基于表面肌电的手势交互凭借其易穿戴、对光照环境的鲁棒性以及对残疾用户运动意图较强的识别力等优点,成为人机交互领域的新型研究热点之一。  在基于表面肌电的手势交互中,其核心问题是如何准确地对肌电信号建模并识别出用户输入信号中所表达的含义。研究者们已基于经典机器学习和深度学习的框架对表面肌电手势识别进行深入研究,但依然存
随着计算机技术的快速发展,互联网积累了海量的时序数据,如问答数据、社交网络数据和电商交易数据等。如何对这些时序数据中内隐因素之间的交互进行建模,理解个体用户或群体用户在时序数据中所蕴含的意图和行为,是当前人工智能领域研究的热点和难点。本文以问答系统中时序数据理解为研究对象,提出了若干算法模型并进行验证。  一般而言,问答时序数据中丰富的内隐交互信息可以分为结构时序交互和语义时序交互。结构时序交互表
学位