不可压缩Boussinesq方程组及其相关模型的渐近极限问题研究

来源 :北京工业大学 | 被引量 : 2次 | 上传用户:yhmlivefor49
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Boussinesq方程组是常用来描述大气和海洋环流的动力学模型,在数学上它是流体速度场与温度(或密度)耦合而成的方程组.本文主要研究了温度带有非齐次狄利克雷(Dirichlet)边界条件的不可压缩Boussinesq方程组的边界层问题、速度场和温度都带有坏初值条件的Boussinesq方程组的初始层问题、速度场带有无滑移边界、坏初值条件并且温度带有非齐次狄利克雷边界条件的Boussinesq方程组的混合层问题以及速度场、温度和溶质浓度都带有坏初值条件的Boussinesq方程组的初始层问题这四种情况的渐近极限问题.所涉及的主要数学理论与研究方法有奇异摄动理论中的渐近展开匹配方法、截断函数方法、经典的能量方法等以及一些重要的不等式,如Poincare不等式,Cauchy-Schwarz不等式,Holder不等式,Young不等式,Sobolev嵌入定理等第一章,主要介绍不可压缩Boussinesq方程组的物理背景、模型简介、研究进展、预备知识和本文研究内容第二章,研究了矩形区域为H=(0,L1)×(0,L2)×[0,1],速度场带有无滑移边界条件、温度带有非齐次狄利克雷边界条件的不可压缩Boussinesq方程组的边界层问题.由于垂直方向有两个边界,故存在两个边界层.利用奇异摄动理论中的渐近匹配方法和多尺度分析得到了 0阶内函数方程组以及0阶边界层函数方程组,进而利用所得的内函数和边界层函数构造出近似解.最后利用经典的能量方法得到了当热扩散系数趋近于0时,近似解的收敛性估计第三章,研究了三维柱形区域Q=T×[0,1],环T=(R/2π)2,速度场和温度都带有坏初值条件的无量纲化Boussinesq方程组的初始层问题.对带有Rayleigh-Benard对流的Boussinesq方程组进行无量纲化,并结合Boussinesq 近似,考虑Prandtl数趋近于无穷,Boussinesq方程组的无量纲形式与其极限方程组的初始条件并不能匹配,产生了初始层.利用渐近匹配方法构造带有0阶和1阶内函数以及0阶和1阶初始层函数的近似解.进而求解近似解函数性质,结合近似解的方程推导误差方程,借助Gronwall不等式得到了误差函数的收敛性估计第四章,研究了速度场带有无滑移边界条件、坏初值条件以及温度带有非齐次狄利克雷边界条件的Boussinesq方程组的混合层问题.研究与第三章相同的简化模型,考虑Prandtl数趋近于无穷,简化方程组与其极限方程组速度的初始值的不匹配以及温度的边界值的不匹配,产生了初始层以及边界层.首先,构造速度带有初始层和温度带有上边界层、下边界层的0阶近似解,利用奇异摄动理论中的渐近匹配方法求解近似解函数的性质.其次,利用近似解方程组推导误差方程,并对误差函数进行能量估计,得到了无量纲化方程组与其极限方程组的收敛性.第五章,研究了速度场、温度和溶质浓度都带有坏初值条件的Boussinesq方程组的初始层问题.对带有thermosolutal对流的Boussinesq方程组进行无量纲分析和Oberbeck-Boussinesq近似,利用渐近匹配方法,结合经典能量法得到了当Prandtl数趋近于无穷,无量纲化方程组的解的渐近极限收敛性.
其他文献
L-岩藻酮糖和D-核酮糖都是稀少糖,在食品、农业和医药工业具有广泛的潜在应用价值。它们属于戊糖,戊糖包括醛戊糖和酮戊糖两大类。总共有八种醛戊糖和四种酮戊糖,除少数几种是天然存在的糖,其他大多数都是稀少糖,在自然界存在极少。稀少糖拥有很大的商业应用价值,尤其是在医药领域。由于在自然界中含量极少,且化学合成法难度较大,稀少糖的价格较高,且无法满足工业化生产的需求。通过生物酶法,将L-岩藻糖和D-阿拉伯
电磁流体动力学方程是源自等离子体物理、半导体材料科学中的宏观数学模型,主要包括光滑电磁流体Euler-Maxwell方程组和粘性电磁流体Navier-Stokes-Maxwell方程组.数学上,电磁流体动力学方程的研究主要从两方面展开:研究模型自身的适定性和模型之间的渐近机制.本文主要采用时空混合导数迭代法、反对称矩阵的技巧,以及魏格纳变换等方法,研究了双流非等熵可压缩Euler-Poisson,
密度估计是非参数统计学的重要研究方向,也是回归估计与删失估计的基础.紧支密度估计已取得了丰硕的成果,见Donoho等人的工作(D.L.Donoho,I.M.Johnstone,G.Kerkyacharian,D.Picard.Density estimation by wavelet thresholding.Ann.Statist.,1996,24(2):508-539).非紧支密度估计的研究相
高速公路服务区作为高速公路的重要服务窗口,体现着高速公路的社会形象,如何将智慧建筑理念融入高速公路服务区设计,是目前学界与业界都较为关注重点之一。文章解读了智慧建筑理念,并对近年来高速公路智慧服务区建设现状进行了分析,探讨了高速公路服务区智能化设计路径。
本文应用奇异摄动理论中的渐近展开匹配方法,能量方法和加权的Sobolev嵌入技巧等,研究了三维迁移率互异的半导体漂流扩散模型与电解液中电扩散模型的拟中性极限问题.本文共分四章.第一章绪论,主要介绍上述方程的物理背景和研究现状.为了方便起见,我们也罗列了本文所用到的一些知识.第二章漂流扩散模型的拟中性极限和边界层.本章研究了三维有界区域中迁移率互异的漂流扩散模型的拟中性极限和边界层问题,与以往研究的
基于静压气体轴承具有可提供较大承载力与主动磁轴承具有无摩擦、无磨损、可控性好的特点,提出了一种新型气磁悬浮轴承。研究了其悬浮机理,基于静压气体轴承压力分析以及主动磁轴承磁路分析,建立了气磁悬浮轴承悬浮力的数学模型;通过有限元仿真分析了气磁轴承的磁场特性、流场特性以及气磁耦合特性,确定了气磁轴承的承载能力。研究结果表明:该气磁轴承转子系统结构紧凑,简化了传统结构的冗杂性,动静态特性良好,具有较高的刚
本文基于当前全球新型冠状病毒肺炎疫情形势,分析患者后期可能出现的功能障碍,初步设计在社区康复工作中进行评估以及干预的具体方案和注意事项,为日后帮助患者提升机体各项能力,提供一定的借鉴。
设施选址问题和奖励-收集斯坦纳树问题是计算机科学和运筹学领域中的经典问题,均有广泛的实际应用背景.本文通过设计近似算法,对设施选址问题和奖励-收集斯坦纳树问题的几种变形进行研究,包括:鲁棒设施租赁问题,平方度量的软容量设施选址问题,k-奖励-收集斯坦纳树问题,广义奖励-收集斯坦纳森林问题.基于原始对偶技巧,我们分别给出上述变形问题的近似算法和相应的算法分析.在鲁棒设施租赁问题中,给定设施集合,基数
随着科学技术的发展和进步,作为非线性动力学的重要组成部分的分叉理论与方法,广泛应用在工程系统的动力学分叉问题中。近年来,多种研究动力系统分叉问题的方法被提出。其中奇异性理论在定性分叉分析方面得到广泛的应用,因为它能够用统一的、明确的方法处理各种复杂的分叉问题,并建立起系统的动力学行为与系统参数间的全面联系。目前,奇异性理论比较完善的是关于单状态变量、单分叉参数的动力系统,对于多状态变量、多分叉参数
以函数形式呈现的数据称为函数型数据,比如曲线,曲面或在连续区间上的其他形式,不同于标量形式,这时每一个样本被看成是一个函数.对函数型回归模型的分析,现有文献常假设误差独立同分布,但实际中也常有一些数据集含有诸如:观测之间具有相依性,或由于客观或人为原因收集到的函数型样本在观测区间的某些子区间上缺失,样本含有异常值等结构特征.本论文主要目的是,系统研究能够捕捉到数据集所具有结构特征的若干函数型回归模