【摘 要】
:
TC16钛合金因具有优良的强韧性、抗疲劳性和耐腐蚀性等特点,被认为是航空工业生产钛合金紧固件的理想材料。同时,退火态TC16钛合金棒材具有优异的冷加工塑性,其室温锻压比达到1:4,压缩后可直接使用或固溶时效后使用。因此,研究TC16钛合金棒材压缩变形行为具有重要意义。本文以TC16钛合金热轧棒材作为对象,研究其室温压缩成形性能,并通过冷轧实验试制了TC16钛合金板材,同时研究了热处理对TC16钛合
论文部分内容阅读
TC16钛合金因具有优良的强韧性、抗疲劳性和耐腐蚀性等特点,被认为是航空工业生产钛合金紧固件的理想材料。同时,退火态TC16钛合金棒材具有优异的冷加工塑性,其室温锻压比达到1:4,压缩后可直接使用或固溶时效后使用。因此,研究TC16钛合金棒材压缩变形行为具有重要意义。本文以TC16钛合金热轧棒材作为对象,研究其室温压缩成形性能,并通过冷轧实验试制了TC16钛合金板材,同时研究了热处理对TC16钛合金棒材及板材组织与力学性能的影响。主要研究内容及结论如下:研究了热处理工艺对TC16钛合金热轧棒材组织和力学性能的影响。结果表明:退火后合金组织由等轴α相、晶间β相以及少量的片层状α相组成,抗拉强度(Rm)为878MPa,延伸率(A)为15%,断面收缩率(Z)为64%。经760~840℃固溶及550℃时效后合金组织由等轴α相、晶间β相以及β相内析出的针状次生α相组成,合金强度和硬度得到不同程度的提高,产生了时效强化,在800℃固溶及550℃时效后合金具有优异的综合力学性能。同时分析了不同热处理条件下TC16钛合金棒材拉伸断口特征,宏观断裂方式均为延性断裂,微观断裂机制均为韧窝型断裂。室温压缩实验结果表明,退火态TC16钛合金压下率可达80%,具有优异的冷成形能力;而固溶态和时效态合金压下率分别为51.8%和31.2%,冷成形能力较差,断裂失效机制为剪切断裂。同时进行了退火态TC16钛合金冷顶镦螺栓实验,螺栓头部压下率可达80%,螺栓头部侧表面出现45°微裂纹。基于压缩实验研究结果,对退火态TC16钛合金进行了板材冷轧试制。结果表明,退火态合金具有优异的冷轧成形性能,变形量大于73%时,α晶粒沿轧制方向被拉长,形成纤维状组织,合金抗拉强度和硬度分别提高了25.2%和14.6%,得到明显的形变强化。研究了退火处理对TC16冷轧板材组织和力学性能的影响,冷轧变形量大于47%时,发生完全再结晶,形成等轴α晶粒组织,力学性能较退火态合金棒材有不同程度下降。TC16钛合金冷轧实验数据对今后板坯冷轧及丝材冷拉拔工艺开发提供技术支持。
其他文献
许多交通事故主要是由于驾驶员无法在轮胎摩擦极限下控制车辆。现有无人驾驶车辆运动控制技术大多避免车辆达到摩擦极限。但观察发现,赛车手经常在车辆摩擦极限下进行比赛而不会使车辆失稳。若所设计控制算法具有与赛车手类似的控制能力,许多致命的事故就可以避免。为了在尽可能广泛的情况下确保安全,探索无人驾驶车辆在极限工况下的运动控制有助于提升行驶安全性。为此本文基于国家重点研发计划“新能源汽车”专项项目,分别就无
以2024-T4铝合金为研究材料,利用电流的电致塑性效应与激光冲击复合,提出一种新型金属材料强化方式,论文针对实际工程应用中电流设备、激光设备功率不足和工件需要局部处理等问题,设计了一种能在局部区域汇聚高密度电流的通电装置,并能与激光冲击很好的配合完成复合强化。论文对不同处理方式下的铝合金试样进行显微硬度、残余应力、断口形貌和微观组织的测试、观察和分析,进行复合强化效果研究,其主要工作和结论如下:
对大数据进行分析,不仅要有可行的运算能力,还要有对数据进行高效率分析的方法。本文所探究的运用可视图模型构建基于时间序列的数据网络就是很好的分析数据的方法之一。当前已有的可视图模型虽然都能延续时间序列的内在形态特点,但有些性能存在一定的局限性,例如算法的复杂程度、抗噪性能等。本文在已有的一般可视图(VG)和水平可视图(HVG)模型的基础上,在模型的构造过程中,结合滑动窗口和相关系数,提出一种基于相关
近年来,随着浅水波方程在力学、经济学、生态系统等方面的广泛应用,该类方程解的性质引起了众多研究者的关注。高阶Camassa-Holm方程是一类重要的浅水波方程,本文研究了在H2空间下,二阶Camassa-Holm方程的解在行波解Q附近的性质。最终得到了二阶Camassa-Holm方程的刘维尔性质,即若方程的解全局存在,那么存在平移不变量和伸缩不变量,使得在平移变换和伸缩变换下,解等价于行波解;若方
使用惯容器取代传统质量元件,推动了动力吸振技术在车辆工程中的应用与发展。动力吸振型“惯容-弹簧-阻尼”(Inerter-Spring-Damper,ISD)悬架的结构简单,能够提高车辆的行驶平顺性与操纵稳定性。但当车辆载荷变化时,使用定惯质惯容器的线性ISD悬架与车身主振系的动力学耦合关系会随之改变,影响了悬架动力吸振效果,限制了悬架性能的进一步提高。本文结合动力吸振技术与非线性液力惯容器惯质位移
随着智能化的发展,智能车辆成为汽车行业的重要发展方向。然而,在高速大曲率工况下,智能车辆横纵向难以协调而保证良好的控制效果,成为智能车辆横纵向控制研究亟待解决的难题。为此,本课题依托于“国家重点研发计划”等自动驾驶关键技术研究项目,开展智能车辆横纵向协调控制相关内容的研究,提出基于可拓理论的智能车辆横纵向协调控制方法。其中,横向上采用结合车辆状态关联函数的状态补偿可拓调节纯跟踪控制,解决了在高速大
21世纪以来,科技不断进步,经济不断发展,人们生活得到了极大改善,地球上出现越来越多的电子废弃物,电子废弃物一方面具有巨大的利用价值,另一方面其可能含有大量对人体有害物质,故电子废弃物回收处理刻不容缓。就目前而言,电子废弃物行业发展紊乱且缓慢,回收利用率极低,大量可循环利用资源被浪费,对人类健康和生态环境产生了极大威胁。为提高现有资源回收利用率,合理地对电子废弃物回收进行处理,减少环境污染,多个国
本文利用变分方法研究了 Schr(?)dinger-Possion系统和Choquard方程解的存在性,这两类方程在量子力学、半导体理论等领域有广泛应用。例如,Schr(?)dinger-Possion系统用来描述带电波与其自身静电场的相互作用,而Choquard方程可以用来描述量子理论中静态下极化子模型。第一部分研究了如下Schr(?)dinger-Possion方程径向对称、非平凡弱解的存在性
固态锂电池因其高能量密度和高安全性而备受关注,是未来储能科技的发展方向之一。但目前固态锂电池距离全面商业化仍有一段距离,其主要问题是其关键材料固态电解质的室温离子电导率低和界面相容性差,特别是锂金属的活泼性较强,极易与固态电解质发生反应,生成持续生长的不稳定界面,从而导致电池性能的快速衰减。本文针对固态锂电池的电解质/锂负极的界面问题,在聚碳酸丙烯酯(PPC)/La2Zr2O7(LZO)/LiTF
随着国家汽车产业的逐渐成熟,汽车的产量以及销量一直处于增长状态。即使近两年受疫情以及转型的影响,销量略有下降,但也处于快速回暖的状态中。中国汽车行业目前正处于寒冬期,激发了企业间的强烈竞争与合并。伴随着激烈的竞争,各厂商对于新车型的研发越来越重视,而汽车车身覆盖件的开发、质量以及成本问题正是新车研发中重要的一环。有限元数值模拟技术与优化设计方法的结合,对覆盖件开发和质量提高来说有很大的帮助。本文研