【摘 要】
:
高超声速飞行器是未来国防战略的重点,强烈的壁面效应造成了飞行器表面的巨大热流,耐温材料已经跟不上其发展速度,因此需要高效可靠的热防护冷却系统。发汗冷却是一种冷却效率高的主动冷却技术,冷却剂发生相变可以利用相变潜热进一步提升冷却效果,使用更少的工质,但多孔介质相变流动与换热规律仍不明确。进行相变发汗冷却规律的研究对高超声速飞行器热防护系统具有重要意义,本文将基于相变和发汗冷却技术对热防护系统进行快速
论文部分内容阅读
高超声速飞行器是未来国防战略的重点,强烈的壁面效应造成了飞行器表面的巨大热流,耐温材料已经跟不上其发展速度,因此需要高效可靠的热防护冷却系统。发汗冷却是一种冷却效率高的主动冷却技术,冷却剂发生相变可以利用相变潜热进一步提升冷却效果,使用更少的工质,但多孔介质相变流动与换热规律仍不明确。进行相变发汗冷却规律的研究对高超声速飞行器热防护系统具有重要意义,本文将基于相变和发汗冷却技术对热防护系统进行快速预估。针对高超声速飞行器热防护系统多孔介质相变换热这一关键技术问题,本文基于水蒸气RPI相变模型与多孔介质非平衡换热模型,开发了固体/流体耦合传热快速预估模型,能够有效应用于采用多孔介质的先进热防护系统的快速设计和性能评估,通过与模型实验以及CFD高级相变模型计算结果对比吻合很好。进一步研究了考虑相变的多孔介质非平衡换热过程以及高超声速飞行强壁面效应和高焓流粘性耗散的物理机制,预估计算结果表明,在一定的飞行条件下,随着冷却剂流量增加,冷却能力提高且效率平缓趋于最高值,且由于存在相变过程,相变区域比例越大,压力损失也随之增大,导致冷却剂流量与流动阻力呈现出复杂的,以饱和水和饱和蒸汽两个状态点为极值点的两阶段反向变化的近似二次曲线规律。简化的降阶模型和多孔头锥的计算结果基本一致,但空气侵入改变了蒸发区域。相变位置和工质气化程度是造成复杂流动与换热和发汗冷却效率不均匀性的主要原因,质量流量、孔隙率和外部热流量一起对其产生复合影响作用。本文模型能够依据飞行工况进行比较精准的流量动态调控,预估整个发汗冷却热防护系统的设计参数。针对高超钝头体冷却结构设计,本文模型通过控制冷却剂汽化过程及其与外部流场的相互干扰作用,快速获得冷却剂流量、两相区边界、孔隙率以及防护层厚度等参数的关系,能够满足先进冷却结构方案设计的计算精度。
其他文献
带电粒子(比如离子)与电场、流场、温度场等物理场之间的相互作用是导致电(热)对流现象的根本原因。电(热)对流蕴含丰富的物理内涵,但其本身问题复杂,求解困难且计算量大。本文采用介观的双松弛格子Boltzmann方法对介电液体电(热)对流进行模拟研究。首先,提出了一种可用于电(热)对流研究的优化LB方案,并结合数值模拟对优化前后的模型进行了对比分析。随后,利用CUDA平台的三维电热对流并行程序,研究了
旋转机械在我国工业发展的过程中占据着极其重要的地位,裂纹的出现会造成非常严重的生产事故以及财产损失。本文针对重型燃气轮机,分别研究其发生呼吸裂纹故障以及常开裂纹故障时的特征,确定其特征频率以及建立起设备故障诊断系统,用以预防大型事故具有非常重大的意义。根据重型燃气轮机的结构特点建立模型,运用余弦模型对于裂纹单元进行模拟,应用转子动力学有限元法以及Timoshenko梁理论建立转子系统,组装动力学方
目前,化石燃料仍为主要能源,但其存在环境污染严重,增加碳排放,几十年内消耗殆尽的问题,能源危机已成为世界性挑战。清洁新能源被认为是能源危机的有效解决方案,近年来太阳能光伏(PV)发电技术凭借着其环保及普遍等优点迅速发展,但其发电效率受工作温度影响,严重制约了发电性能,因此,PV冷却技术应运而生。为实现PV电池的高效热管理,本文提出一种基于相变材料(PCM)的被动式PV冷却技术,内外双肋片贯穿PCM
流化床中细颗粒在气相-固相和固相-固相反应过程中可以提供比传统材料更好的接触效率和更高的反应速率,近年来受到越来越多的关注。与粗颗粒不同的是,细颗粒的流化受到粘附作用的影响,在干燥环境下,颗粒间主要通过静电力和范德华力这两种粘附力彼此附着,形成松散的团聚体,影响颗粒流化状态和气泡尺寸、床层压降、床层高度等参数。两种粘附力的耦合作用是导致颗粒流化过程中颗粒团聚与复杂颗粒行为的主要原因。研究不同条件下
现代先进燃气轮机对功率和效率要求的进一步提升,使得燃气轮机部件热环境更加恶劣,因此亟待高性能的冷却技术出现。外部冷却(对流冷却、气膜冷却、发汗冷却)作为燃气轮机高温部件的重要冷却方式,因其良好的冷却性能被广泛应用在涡轮叶片表面。发汗冷却作为未来先进燃气轮机采用的更为有效的主动热防护冷却方式,结合气膜冷却方式的优点和多孔介质材料特性,均匀分散冷却流体出流,利用多孔介质较大的比表面积和内部体积提供充分
我国空间引力波探测对电推进提出了极高的性能和寿命需求,0.1μN的可调节精度和10000小时的使用寿命,要求必须严格控制外界干扰。该任务候选的电推进一般由离子加速器和阴极电子源构成,传统的空心阴极由于需要供气已经无法满足上述的控制要求,必须使用无工质的阴极。经过论证本文针对无工质热发射阴极开展相关研究,并重点从与推力器耦合的角度出发进行热电子发射阴极的设计与优化工作,主要内容如下:首先针对任务对电
在高超声速及隐身技术飞速发展的背景下,基于高速飞行器火箭发动机喷焰辐射对目标进行探测、识别这一技术越来越受到重视。然而,火箭发动机喷焰辐射信号产生机制十分复杂,探测过程中信号传递环节众多,同时对于非合作目标,其发动机原型参数、飞行参数不完备,由此造成天基红外探测系统获取的喷焰辐射信号高度退化,难以通过探测信息实现对飞行目标的分类与识别。因此,通过对火箭发动机从原型参数到喷焰辐射信号的全链条仿真,研
化学动力学反应机理在航空发动机燃烧室的设计与优化上有着重要的作用。探究航空发动机燃烧室内燃料的化学反应过程,构建其微观化学反应机理,对于航空发动机发展与研究显得尤为关键。航空煤油是由数百种碳氢化合物所组成的,针对这类组分复杂的燃料,研究者提出构建替代模型的方法,并在此基础上发展反应动力学机理,使其表现出与实际航空煤油相似的物化特性。相比于国外JP-8、Jet-A型航空煤油,国内相对缺乏对国产RP-
在航天领域,微小卫星被越来越多的研究者所重视,其中承担着为卫星各模块提供高质量电能作用的电源模块显得尤为重要。由于电源模块的质量在小卫星中的占比较高,因此有必要对提高电源模块的功率密度进行研究。在太阳能-蓄电池结构电源中,由于蓄电池充电调节器输入端为母线,故希望其输入电流纹波尽量小进而避免对母线电流质量的负面影响。因此,本文的主要研究内容为:选择并改进蓄电池充电调节器拓扑、提高拓扑的功率密度、降低
空冷塔是火力发电厂的重要组成部分,随着空冷塔体量的增大,双曲线型结构空冷塔加工施工困难的缺陷愈发明显,近年来更易施工、更经济的圆柱截锥型钢制空冷塔的应用越来越多,以上两种塔型空冷塔的流动与换热性能十分具有研究意义。本文基于圆柱截锥型和双曲线型两种塔型的缩尺寸物理模型塔,分别对其塔内不同位置温度和速度进行实验测量,分析了两者在流动换热性能上的异同,并对实验在温度系统选择方面和测点布置方面进行了优化改