论文部分内容阅读
轧机振动现象在钢铁生产企业中普遍存在,并且限制着轧机的产能释放,成为生产薄规格高附加值产品的障碍,是国内外轧制领域亟需解决的技术难题。带钢轧制是由轧机的机械系统、液压系统和电气系统以及带钢共同相互作用完成的,任何子系统的参数变化都会对轧机振动产生影响,所以通过建立符合实际的数学模型来研究轧机机电液耦合振动是非常重要的。众所周知,影响轧机振动的因素众多,现场通过调节轧机某个参数来抑制轧机振动的抑振方法往往只能对某一种振动有效,因此研究和探索通用的主动抑振技术显得尤为重要。基于热连轧机机电液多态耦合振动和控制理论研究,提出了主动抑振思想和手段,具体如下:针对某1580热连轧机F2和F3机架振动现象,投入了整个机组耦合振动在线远程监测系统,利用牌坊顶部振动速度传感器捕捉轧机液机耦合垂振速度信号,利用研制的扭矩遥测系统捕捉主传动系统扭振信号,同时采集现场PLC提供的电气、液压和工艺相关信号,综合在线监测了轧机机电液多态耦合振动特征及规律。基于Sims轧制力模型,建立包含轧制过程、机械结构、液压伺服系统和控制系统在内的轧机垂直振动耦合模型,通过与某1580热连轧机现场采集的数据对比,分别验证轧制力模型、系统动态响应和耦合振动模型的有效性。通过数值仿真,分析变形抗力、轧制速度、液压缸活塞腔面积和等效刚度的稳态量以及变形抗力和入口厚度的动态量对轧机振动的影响。分析结果表明:降低变形抗力、轧制速度和等效刚度以及增加液压缸活塞腔面积可以降低振动能量;变形抗力和入口厚度的动态量可以诱发轧机振动并呈现倍频现象。针对单自由度PID控制器,利用主导极点理论、广义频率法和幅相裕度理论,提出既能保证预期闭环动态响应,同时又能保证闭环系统稳定性的参数整定方法。针对二自由度PID控制器,基于预期动态理论和广义频率法,提出同时保证预期闭环动态响应和闭环系统稳定性的参数整定方法(DDE-GFM),并与Panagopoulos方法进行了对比,结果表明:两种方法在稳定裕度相同的情况下,DDE-GFM的参数整定方法具有更小的超调量和更短的调节时间。针对线性自抗扰控制器(LADRC),利用带宽法和广义频率法,提出能够同时保证闭环系统的稳定裕度和预期动态的参数整定方法(BD-GFM),通过与PID对比表明:在相同稳定裕度下,LADRC的调节时间更短,超调量更小。针对热连轧机垂直振动,利用扩张状态观测器(ESO),分别提出基于高阶ESO、低阶ESO单通道补偿和低阶ESO双通道补偿的抑振器。仿真结果表明:高阶ESO抑振器的设定频率越接近实际振动频率,抑振效果越好;低阶ESO单通道补偿抑振器类似于动力吸振器,将工作辊的振动吸收到支承辊上;低阶ESO双通道补偿抑振器能够同时降低工作辊和支承辊振动。三种抑振器均具有非常优越的鲁棒性。最后,通过现场试验验证了高阶ESO抑振器的抑振能力,取得了满意的效果。