论文部分内容阅读
提出一种融合加权对称图像的二维FDA人脸识别算法。将人脸图像分解为奇偶对称脸,并利用加权因子将奇偶对称脸重构新的人脸样本,通过二维FDA算法求解新样本图像的最优特征子空间进行人脸分类。有效融合二维FDA算法的优点,并利用人脸对称性的特征,同时进一步分析加权因子对人脸识别效果的影响,通过选取最优加权因子最大地提高识别率。在人脸图像库ORL中进行的实验结果表明,该算法有效并能获得较高的识别率。