论文部分内容阅读
针对人体行为最重要的motion特征,提出了基于时间上下文的二级递推异常行为识别方法.不同于传统深度学习的训练方法,本文方法不是直接从图像数据中学习特征,而是把提取的形状信息HOG特征作为训练输入.首先提取基于HOG算法的图像形状特征,采用提取到的特征训练DBN网络.其次利用已经训练好的DBN网络和Softmax分类器识别出人体粗目标区,然后根据粗目标区域的时序上下文信息,计算质心加速度.最后判断加速度的阈值,识别出异常行为的精目标区.本文将粗细目标结合的二级递推方法应用到课堂行为识别中,通过实验结