【摘 要】
:
动力系统的概念,最早起源于十九世纪末,在经典力学和微分方程定性理论的研究中。动力系统是一种描述一个给定空间中的所有点随时间旅程的方法,关心的是微分方程解的长期行为。根据所研究的微分方程形式的不同,分为线性微分方程系统和非线性微分方程系统。对于线性系统,解的存在唯一性是显而易见的。但是对于非线性系统,情况比较复杂,并且也没有一种普遍适用的方法来求解非线性微分方程。所以研究非线性微分方程解的存在性就尤
【基金项目】
:
国家自然科学;江苏省高校自然科学;江苏省自然科;;
论文部分内容阅读
动力系统的概念,最早起源于十九世纪末,在经典力学和微分方程定性理论的研究中。动力系统是一种描述一个给定空间中的所有点随时间旅程的方法,关心的是微分方程解的长期行为。根据所研究的微分方程形式的不同,分为线性微分方程系统和非线性微分方程系统。对于线性系统,解的存在唯一性是显而易见的。但是对于非线性系统,情况比较复杂,并且也没有一种普遍适用的方法来求解非线性微分方程。所以研究非线性微分方程解的存在性就尤为重要。而微分方程边值问题,作为微分方程的一个重要分支,在力学、天文、物理中有着重要的应用,同时在化学、生物学、气象学、医学、经济学以及航空航天、水电能源、环境、动力和生物工程等领域中也有着广泛的应用。本论文研究动力学系统中几类非线性微分方程共振与非共振条件下的多点边值问题、二阶差分方程以及无穷区间上的微分方程边值问题、具有时滞分布的偶数阶带阻尼项的微分方程的振动分析以及奇异摄动非线性微分系统边值问题。讨论解的存在性和唯一性、正解和多个正解的存在性,以及解的振动性,渐进性等。主要工具是Mawhin迭合度定理、微分不等式理论、拓扑度理论、不动点定理、奇异摄动方法等。全文分五章。第一章介绍有关动力系统和微分方程边值问题以及非线性振动的背景知识和当前进展情况,对本文工作的创新之处作出说明。第二章通过对Bananch空间进行直和分解,构造合适的投影算子,并进行有效的先验界估计,运用Mawhin迭合度理论研究核空间维数为一和核空间维数为二的三阶微分方程多点共振边值问题、高阶微分方程多点共振边值问题以及高阶非局部共振边值问题的可解性。与已有的工作相比,本章运用新的方法,获得了新的结果。第三章运用上下解方法和Leray-Schauder度理论,研究具非线性边界条件的三阶微分方程多点边值问题解的存在性和唯一性。运用两对上下解方法研究非线性项依赖于高阶导数的n阶三点边值问题三解的存在性。我们研究问题的边界条件是非线性的,因而讨论的边值问题更具一般性。本章的结果推广和改进了已有的工作。第四章运用Leggett-Williams不动点定理,研究二阶差分方程多点边值问题,通过给出离散边值问题相应的Green函数,并讨论Green函数的性质,得到二阶离散边值问题的多个正解的存在性。类似地运用Leggett-Williams不动点定理,研究无穷区间上二阶微分方程边值问题,得到了三个正解的存在性。我们的结果推广了以前的工作。第五章运用广义的Riccati技巧、Hardy-Littlewood-Polya不等式研究具有时滞分布的偶数阶带阻尼项的微分方程的振动性,得到了一些新的振动性准则。运用微分不等式理论、不动点定理和奇异摄动理论研究二阶非线性奇异摄动微分系统边值问题。得到了解的存在性以及解的一致有效渐近估计。本章的主要结果推广和改进了已有文献的工作。
其他文献
含金属沉积物是海底热液活动的产物之一,由热液成因的含金属矿物与远洋沉积物混合沉积而成。由于含金属沉积物携带了热液的源区和热液循环的动力学信息,对其矿物学和地球化学研究对于重建热液活动的历史、位置、强度和演化至关重要。对远轴深海沉积物中热液成因矿物的识别能为隐伏热液矿床的勘探提供有效手段。卡尔斯伯格脊(简称卡脊)位于西北印度洋,是印度洋板块与索马里板块的构造边界。卡脊的扩张速率为22~32 mm/y
这些年来,拓扑绝缘体和自旋流以及相关材料的输运性质得到了充分的研究和发展,为相关电子器件制造提供了理论支持,反过来为这些理论提供了实验支持。定义了介观系统的一些基本物理量,给出了二维纳米器件电导的微观解释,通过散射矩阵将其推广到紧束缚模型。论文主要分为三个部分。第一,在考虑次近邻相互作用的情况下,利用紧束缚模型的格林函数,给出了石墨烯纳米带的局域电流图像,将局域电流的震荡和电导曲线的震荡联系起来,
自20世纪八十年代在二维电子气中发现整数量子霍尔效应以来,经过三十几年的理论和实验发展,固体材料中的拓扑物性成为了新的研究前沿,并且先后发现并证实二维和三维的拓扑绝缘体、狄拉克半金属、外尔半金属和拓扑超导体等一系列拓扑材料。这其中,磷族化合物因为其非常大的磁电阻效应而引起广泛的关注,再结合理论计算后发现,很多磷族化合物都具有非平庸的拓扑性质。结合过渡金属本身具有丰富的物性,我们研究并发现了在过渡金
绝大部分昆虫在漫长的进化过程中,获得令人惊叹的飞行技巧,其高超的飞行机动性早已引起人们注意、探索并仿生飞行机理。传统的仿生——人造微型飞行器研究尽管已经发展几十年,却仍然面临巨大的挑战,如有效载荷能力、飞行距离和速率等等。近几年来,一项新技术——昆虫-机器接口的发展有望解决人造微型飞行器所遇到的瓶颈。它通过建立微电子机械系统与昆虫神经系统或肌肉系统的相互融合,实现神经肌肉电刺激,进而遥控昆虫自身的
QCD求和规则是一种半理论半唯象的非微扰方法。其核心要素——QCD关联函数通过色散关系连接了夸克层次的理论和强子层次的唯象,而非微扰效应被吸收到一系列可以唯象地确定的真空凝聚值中。因此QCD求和规则可以看成三个方面(层次)的有机结合:QCD理论(?)求和规则具体方法(?)强子唯象。本文中,我们围绕以上三个方面,系统地研究了 1-+轻混杂态、0--/1+-轻四夸克态和ρ介子的求和规则。在QCD理论计
微分方程边值问题是微分方程理论的重要分支,在自然科学和工程技术等诸多领域有着广泛应用.近年来,人们非常关注微分方程多点边值问题的研究,多点边值问题起源于二十世纪八十年代,此后,很多学者讨论了更一般的非线性多点边值问题,其中包括分数阶微分方程边值问题,得到了许多卓有成效的成果.共振是自然界的常见现象,反映在数学模型上就是微分方程共振边值问题,共振边值问题解的存在性研究是人们研究的热点问题之一,有许多
目的:观察揿针治疗空军机务人员脊源性腰痛(SLBP)的临床疗效,并分析影响治疗效果的相关因素。方法:将120例患有SLBP的空军机务人员随机分为揿针组(40例)、外治组(40例,脱落1例)及联合组(40例,脱落1例)。揿针组采用揿针疗法,将新揿针贴于腕踝针下6、腰痛点、腰阳关等穴,每次每穴按揉1min,每天按揉3~4次,3 d为一疗程,疗程间休息2 d,共治疗3个疗程。外治组应用伤湿止痛膏以腰部压
锂硫电池具有高能量密度、环境友好等优点,是目前国内外研究的热点。其中,硫化锂(Li2S)正极具有三倍于传统锂电池容量的理论比容量(1166 m Ah g-1)、高熔点(938 oC)、较稳定的电极结构(充放电过程中体积膨胀小)以及安全性好(可搭配无锂负极,减少锂枝晶过度生长)等优点,在锂硫电池中受到广泛的关注。但是,硫化锂也存在着导电性不良、多硫化物溶解和穿梭等问题,极大地影响了锂硫电池的性能。目
所谓动力系统就是由拓扑空间及其上的连续自映射所构成的系统[1],从代数角度看,动力系统是一个具有有序态射特征的范畴,代数结构对动力系统的刻画涵盖了相空间、含单参变量的连续自映射以及动力系统本身。因此,探寻动力系统中具有基本意义的、具体的代数系统及其上的映射及特征具有重要意义。典型群、李代数及有限群是常见的、具体的代数系统。本学位论文在广泛地运用矩阵方法[2]和群系理论[3]的基础上,重点对上述代数
基于原子核协变密度泛函理论的无规相近似(RPA)以及准粒子无规相近似(QRPA)方法是研究稳定核以及远离β稳定线的核素的低能跃迁性质的重要工具。然而,在轴对称情况下,传统对角化求解(Q)RPA方程的做法因为组态空间庞大,需要大量的计算资源。为了克服这些数值上的困难,我们采用一种可行的方法,即有限振幅方法(FAM)。这种方法可以直接计算哈密顿量的变分,而不用计算剩余相互作用的矩阵元。因此,有限振幅方