【摘 要】
:
随着超大规模集成电路技术的快速发展,片上系统(System on Chip,So C)的规模越来越大,集成度越来越高,导致片上的电源配送网络(Power Delivery Network,PDN)也越来越复杂。同时各电源域噪声(Power Supply Noise,PSN)会相互串扰,这不仅会影响系统的性能,在噪声严重的情况下,甚至还会引起系统的功能错误。在芯片的设计迭代过程中为了更好地解决系统噪
论文部分内容阅读
随着超大规模集成电路技术的快速发展,片上系统(System on Chip,So C)的规模越来越大,集成度越来越高,导致片上的电源配送网络(Power Delivery Network,PDN)也越来越复杂。同时各电源域噪声(Power Supply Noise,PSN)会相互串扰,这不仅会影响系统的性能,在噪声严重的情况下,甚至还会引起系统的功能错误。在芯片的设计迭代过程中为了更好地解决系统噪声问题,需要对芯片内部的噪声进行测量和分析。然而片上噪声功率谱的带宽可以从直流延展到上百GHz,由于片内走线和芯片封装的寄生电阻、电容和电感的存在,使得很难在片外测量到片内噪声的准确值。所以在需要更加准确地了解片上噪声特性,尤其是更加关心噪声高频特性的场景下,在片上完成噪声测量是十分必要的,也是一个值得被深入研究的方向。本文首先对片上噪声测量技术的基本原理和方法进行了介绍和分析。主要对不同的测量方法的原理,以及测量不同噪声特性所对应的电路结构进行了整理分类,并详细地分析和系统地总结了早期有代表性的片上噪声测量工作以及它们的优缺点。然后本文针对如何减少测量时间和提高测量精度,提出了结合压缩感知(Compressed Sensing,CS)技术的基于压控振荡器(Voltage Controlled Oscilator,VCO)的片上电源噪声功率谱测量系统的设计方案。设计过程中主要的创新点包括:1)通过理论研究,证明了自协方差函数比自相关函数在噪声测量系统中可以获得更低的噪底,同时可以消除测量系统自身引入的噪声,并通过芯片测试结果验证了理论分析的正确性。2)设计了一种无需额外干净的电源和参考电压的基于VCO的6-level量化器,以实现对具有高增益VCO的输出信号进行六个等级的量化,有效提高了片上噪声测量系统的测量精度。3)为了进一步提高测量系统的精度,利用VCO相位噪声作为自然的扰动,提出一种多个子量化器并行量化结构。4)由于片上电源域中具有周期平稳特性的噪声在频域上具有稀疏的特点,所以可以用压缩感知技术进一步减少测量时间。在自相关采样时钟生成电路中,提出了一种非等间距采样时钟模式,实现的压缩测量。5)设计一款无需校准的自相关采样时钟发生器,同时发现并移除了传统自相关采样时钟生成电路中对时钟采样率的限制,有效提高了测量系统的采样率以减小测量时间。以上设计通过40nm CMOS工艺进行了流片和测试,验证了片上噪声测量系统的创新思路。此芯片测量带宽为20GHz,在CS模式下,可以获得0.23μV2/√(MHz)的噪底,对应的频谱精度为2MHz,测量时间为21s。本文提出的设计的性能指标在电源噪声测量领域已达到国内外的先进水平。
其他文献
中红外波段具有大气透明窗口、热辐射和分子指纹吸收等特殊性质,在基础研究和应用领域具有广阔的研究价值。光学天线是微纳光学中近年来新兴的概念,类似于射频和微波天线,光学天线能实现自由空间传播的光场与亚波长局域场能量之间的耦合和交换,是光场调控的有效途径。亚波长金属或介质结构中的共振模式在发光器件、光电调制器和光谱技术等领域有着广泛的应用。本论文对中红外光学天线的共振模式特性和物理机理进行了深入研究,采
极化合成孔径雷达(Synthetic Aperture Radar,SAR)通过主动发射、接收特定的电磁波来获取地物信息,成像不受时间、天气等因素影响。极化SAR图像分类在自然灾害分析、城市规划等军、民领域均有着广泛的应用。随着极化SAR系统的研究与应用,高分辨、多极化SAR图像带来了更丰富的地物信息和更复杂的图像场景,极化SAR数据量也随着极化SAR系统的普及而日益增多。虽然更丰富的极化信息与数
外辐射源雷达与传统的主动雷达相比具有隐蔽性强、辐射源丰富、成本较低、容易部署等优点,已经在军事/民用领域得到了广泛应用。近年来,数字信息化技术飞速发展,相对于传统的模拟广播信号,数字广播、电视、通信等信号的模糊函数大多呈典型的“图钉型”,具有较好的稀疏性。本文针对不同的外辐射源雷达系统,研究了基于稀疏表示的目标检测问题,提出了新的检测算法。所提算法无需信号重构,有效地降低了运算量,缓解了雷达信号处
日益发展的电子系统要求相控阵天线的带宽越来越宽、扫描角度越来越大。虽然宽带平面阵列天线已经实现了±60°扫描范围,但是不能满足现代电子系统的需求。目前,紧耦合天线阵列技术是实现超宽带带宽的一种有效手段,但是其超宽带阻抗匹配问题和大角度扫描问题需要亟待解决。本学位论文对大角度扫描理论进行了深入研究,以平面紧耦合天线阵为研究载体,对其超宽带阻抗变换器、H面大角度扫描匹配层、宽波束天线单元进行了深入研究
近几十年来,利用极化信息提高雷达的检测、抗干扰和识别能力是雷达发展中的一个重要研究方向,受到了学者们的广泛关注。随着极化的引入,信号维度也随之增大,为了刻画包含极化特征的杂波统计特性,就需要更多的训练样本。而在实际中,雷达需要面临着复杂多变的目标检测环境,导致杂波存在异构性,且邻近距离环中合适的杂波样本数量往往较少,因此提升极化雷达在复杂杂波环境中的检测性能显得尤为重要。本文围绕杂波抑制和目标检测
高增益天线在远距离通信、雷达系统、空间探索等领域中应用广泛。平面透镜天线由于具有成本低、质量小、易加工等优点,正成为一种极具吸引力的高增益天线技术方案,并引起了学术界和工业界越来越多的关注。本论文主要研究内容包括:宽带单馈平面透镜天线、基于阵列馈电的低剖面宽带平面透镜天线、相控波束扫描平面透镜天线、相控涡旋波束平面透镜天线、滤波低散射复合平面透镜天线等。本文的主要工作和创新点如下:1.提出了一款基
为了保证高质量、高速率无线服务和可靠的传感能力,需要增加带宽的数量。雷达系统占有丰富的频谱资源,并且雷达与无线通信相似的射频前端结构越来越多,因此雷达和通信系统之间的资源共享成为解决频谱稀缺问题的有效手段。同时随着信号处理技术的迅速发展,干扰抑制、预编码、空间分离以及波形设计均为雷达通信一体化提供了良好的基础。从雷达通信一体化互干扰信号的基本特征出发,本文系统地研究了雷达通信一体化互干扰处理涉及的
本文主要对电磁兼容领域中的电磁辐射源定位和电磁辐射评估进行了研究和探索。为了实现电磁辐射源的定位,建立了一个表征接地板上的电流源与辐射近场之间关系的理论模型。进一步地,提出了一个基于数值格林函数的辐射源模型去重构复杂介质环境中的辐射源。为了加速辐射源的重构,一方面,一个只需要少量近场样本的稀疏求解器被用于快速求解已经建立的辐射源模型;另一方面,本文提出了一个自适应的采样方法去高效地收集辐射源的近场
天线一般关注其远区的辐射特性。然而在某些特定应用场合,如无线输能、近场探测、射频识别、近场高速无线通信、微波医疗和微波成像等领域,目标位于天线工作的近场区,需要将辐射的电磁波能量汇聚在近场区域的特定位置来提升功率密度和减少干扰,该天线称为近场天线。不同于远场天线,近场天线波束赋形维度从(θ,φ)变为(x,y,z),极化变为三维矢量极化(ex,ey,ez)。近场天线不同阵元间存在非线性空间相位因子,
单载波频域均衡(Single-Carrier Frequency-Domain Equalization,SC-FDE)与正交频分复用(Orthogonal Frequency-Division Multiplexing,OFDM)是目前无线通信领域广泛使用的两种典型传输技术。与OFDM通信系统相比,SC-FDE通信系统还具有对载波频偏不敏感、峰均功率比低、发信机结构简单等优点,因此SC-FDE通