论文部分内容阅读
高温超导材料的微波非线性特性一方面限制了高温超导微波器件在高功率环境中的应用,另一方面又是研制高温超导微波非线性器件的基础。因此对高温超导材料的微波非线性特性进行研究至关重要,这类研究也是目前高温超导微波应用研究中的重点和热点。然而由于高温超导非线性所依赖的物理参数较多,且其机理尚不明确,造成高温超导微波非线性特性研究中,微波非线性测试这一基础研究仅止步于表象测试,甚至至今还没有具有可确定误差限的通行测试方法和国际测试标准。为了解决这一问题,本论文提出了以下技术和解决方案:1.研究了截止波导滤波器技术和适用于超宽带测试系统的新型双阻带滤波器技术。据此研制了一款具有较宽阻带的截止波导带通滤波器,其阻带的最高频率可达通带中心频率的14倍以上;同时,研制了适用于DC-18 GHz超宽带测试系统的双阻带滤波器,该滤波器能够在上述频率范围内的任意两个频率上,形成具有任意频率响应特性的两个阻带。利用这两种滤波器技术,可以有效地去除高温超导微波非线性测试平台中存在的各种谐杂波干扰,以此提高测试的准确度。2.提出并实现了一种测试高温超导薄膜局部微波表面电阻的新方法。这一基于镜像介质谐振器测试法的新型局部测试方法,利用金属环的聚焦功能,在保证测试相对误差优于1.8%的情况下,使测试的分辨率达到直径5 mm,面积19.6 mm~2的圆面,较目前作为国际测试标准的双端短路单介质谐振器测试法(分辨率为直径16 mm,面积201.1 mm~2的圆面)提高了10倍。通过这一新型测试方法,可以在低功率线性区以无损伤的方式,对高温超导薄膜的局部微波表面电阻进行测试,为后文中基于谐振器的测试提供有效的对比物理量。同时,由于该测试方法具有较高的分辨率,可以发展成为测试高温超导薄膜微波表面电阻分布的新方法,并且该测试方法的测试频率(约为35 GHz)仅为准光腔局部测试法测试频率(约为145 GHz)的五分之一,因此该新型测试方法具有较好的通用性。3.提出并实现了一种基于平衡式单加载微桥谐振器的新型测试技术。利用该测试技术不仅可以以较低的误差对高温超导薄膜的局部微波表面电阻进行测试,还可以在中低功率激励的条件下,融合经滤波器技术改良后的非线性测试平台,完成对高温超导薄膜微波非线性特性的准确测试,测试的相对误差小于2.3%。同时,由于采用单一微桥谐振器的不同谐振模式进行测试,相对于采用不同谐振器样品进行测试,可以消除由多样品性能偏差引起的测试误差,本文确立并分析了在不同谐振模式下微桥谐振器等效参数之间的关系,为准确测试高温超导薄膜微波非线性特性与频率的依赖关系奠定基础。4.利用平衡式单加载微桥谐振器的不同谐振模式,对高温超导薄膜微波临界电流与频率的依赖关系进行了研究。发现高温超导薄膜的微波临界电流密度在3 GHz、9 GHz和15 GHz分别达到5.135 MA/cm~2、5.435 MA/cm~2和9.620 MA/cm~2,这不仅证明了高温超导薄膜的微波临界电流与频率密切相关,且均高于其直流临界电流密度(2.2 MA/cm~2)。此外,还采用具有极窄线宽的渐变式高温超导共面波导传输线,结合现有文献报道,对发生非线性现象时,传输损耗的突变量与传输线线宽的依赖关系进行了研究。发现传输损耗的突变量随着线宽的减小而减小,甚至在对具有极窄线宽的共面波导传输线(最窄线宽4m)进行非线性测试时,未发现明显的传输损耗突变。为了解释上述两种新现象,本文结合微波电流的时变特性、微波电流在高温超导带条内的分布特性以及微波电流分布的变化趋势,提出了新的非线性物理模型。