论文部分内容阅读
采用多元醇液化技术将香蕉茎秆废弃物转变为富含活性基团羟基的液体产物,使其作为平台原料化合物,制备生物基可降解薄膜;同时采用水溶剂体系和绿色试剂从副产物液化残渣中提取纤维素、碳点等高附加值化学品,实现香蕉茎秆废弃物综合利用。主要研究工作及结论如下:(1)对香蕉茎秆化学成分进行分析;分离提取纤维素、半纤维素和木质素三大主要成分,并分别进行液化,跟踪香蕉茎秆液化过程中三大成分含量变化,建立动力学和热力学方程。结果表明:三种组分活化能大小顺序为:纤维素>木质素>半纤维素;非均相液化过程中多种反应并存;液化物为富含羟基或酚羟基的碳水化合物残基,分子量分布较宽。在溶剂:原料(液固比)5:1,催化剂1 mmol/g,反应温度150℃,反应时间90 min时,香蕉茎秆液化残渣中纤维素含量最高达85.21%。(2)以多元醇液化物(LBP,羟值为246.52 mg KOH/g)为增塑剂,在硅溶胶和十八烷基三氯硅烷(OTS)二者协同体系中,具有疏水性的聚醋酸乙烯酯(PVAc)复合薄膜拉伸强度和拉断伸长率分别提升425.79%和250.81%;以卡拉胶-聚乙烯醇(CG-PVA)为薄膜基体,添加K+促进大分子链相互螺旋聚集;采用等转化率法、伪组分模型法等计算方法分析CG-PVA/LBP/K复合膜热解动力学,致密的网络结构可增强薄膜力学性能和耐热性能。通过浸泡实验表明两种液化物基薄膜均具备可降解性。(3)以多元醇液化物作为引发剂,与ε-己内酯(CL)开环聚合反应,LBP与ε-CL比例为9:1(wt/wt)时,得到的液化物基聚己内酯多元醇(LBP-PCL)重均分子量为14251;以多元醇液化物作为交联剂,六亚甲基二异氰酸酯(HDI)为硬链段,自制和市售两种不同分子量的聚己内酯多元醇为软链段,采用两步聚合法合成聚己内酯型聚氨酯。经FT-IR、13C NMR和GPC等表征分析跟踪复合薄膜的逐步扩链过程,经拉伸试验及DMA、TG和DSC等分析表明该复合薄膜具有良好的高弹态和热稳定性,其拉伸强度高达37.24 MPa,最大拉断伸长率可达638.83%,且具有优异的紫外吸收性能。(4)采用最佳液化条件下所得最高纤维素含量的液化残渣,利用TEMPO氧化法和酸解法成功地制备出残渣纤维素纳米纤维(CNF)和纳米晶体(CNC),CNF平均长度为332.3 nm,平均直径为5.9 nm;CNC平均长度为93.3 nm,平均直径为3.5 nm。(5)对残渣纤维素进行水热反应,利用酸性离子液体(S03H-IL)和PEG协同作用,制备出高产率、高荧光强度的碳点(CDs);其粒径分布为1-4.6 nm,且具有较强的荧光稳定性,可选择性地检测水溶液中的Cr(Ⅵ)。